Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299925

RESUMO

The next generation of mobile broadband communication, 5G, is seen as a driver for the industrial Internet of things (IIoT). The expected 5G-increased performance spanning across different indicators, flexibility to tailor the network to the needs of specific use cases, and the inherent security that offers guarantees both in terms of performance and data isolation have triggered the emergence of the concept of public network integrated non-public network (PNI-NPN) 5G networks. These networks might be a flexible alternative for the well-known (albeit mostly proprietary) Ethernet wired connections and protocols commonly used in the industry setting. With that in mind, this paper presents a practical implementation of IIoT over 5G composed of different infrastructure and application components. From the infrastructure perspective, the implementation includes a 5G Internet of things (IoT) end device that collects sensing data from shop floor assets and the surrounding environment and makes these data available over an industrial 5G Network. Application-wise, the implementation includes an intelligent assistant that consumes such data to generate valuable insights that allow for the sustainable operation of assets. These components have been tested and validated in a real shop floor environment at Bosch Termotecnologia (Bosch TT). Results show the potential of 5G as an enhancer of IIoT towards smarter, more sustainable, green, and environmentally friendly factories.


Assuntos
Internet das Coisas , Indústrias , Internet , Comunicação , Inteligência
2.
Sensors (Basel) ; 20(12)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575891

RESUMO

Small-scale farming can benefit from the usage of information and communication technology (ICT) to improve crop and soil management and increase yield. However, in order to introduce digital farming in rural areas, related ICT solutions must be viable, seamless and easy to use, since most farmers are not acquainted with technology. With that in mind, this paper proposes an Internet of Things (IoT) sensing platform that provides information on the state of the soil and surrounding environment in terms of pH, moisture, texture, colour, air temperature, and light. This platform is coupled with computer vision to further analyze and understand soil characteristics. Moreover, the platform hardware is housed in a specifically designed robust casing to allow easy assembly, transport, and protection from the deployment environment. To achieve requirements of usability and reproducibility, the architecture of the IoT sensing platform is based on low-cost, off-the-shelf hardware and software modularity, following a do-it-yourself approach and supporting further extension. In-lab validations of the platform were carried out to finetune its components, showing the platform's potential for application in rural areas by introducing digital farming to small-scale farmers, and help them delivering better produce and increasing income.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...